Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Year range
1.
Biomedical and Environmental Sciences ; (12): 13-24, 2015.
Article in English | WPRIM | ID: wpr-264624

ABSTRACT

<p><b>OBJECTIVE</b>The aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment.</p><p><b>METHODS</b>48 male Wistar rats were exposed to 30 mW/cm2 microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm2 microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated.</p><p><b>RESULTS</b>Microwave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined.</p><p><b>CONCLUSION</b>30 mW/cm2 microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.</p>


Subject(s)
Animals , Rats , Gene Expression Regulation , Radiation Effects , Hippocampus , Cell Biology , Microwaves , Neuronal Plasticity , Radiation Effects , Neurons , Radiation Effects , Neurotransmitter Agents , Metabolism , PC12 Cells , Receptors, N-Methyl-D-Aspartate , Genetics , Metabolism , Signal Transduction , Physiology , Radiation Effects , Time Factors
2.
National Journal of Andrology ; (12): 201-206, 2014.
Article in Chinese | WPRIM | ID: wpr-309735

ABSTRACT

<p><b>OBJECTIVE</b>To explore the impact of microwave radiation on GC-2spd cells.</p><p><b>METHODS</b>We exposed cultured GC-2spd cells to microwave radiation at the average power densities of 0, 10 and 30 mW/cm2 for 15 minutes and, from I to 24 hours after the exposure, we observed the changes in cell proliferation, histology and ultrastructure, cell apoptosis, and cAMP content by MTIT, light microscopy, electron microscopy, flow cytometry and ELISA.</p><p><b>RESULTS</b>Compared with the control group, the GC-2spd cells showed a significant decrease in proliferation ability at 1 -24 hours after 10 and 30 mW/cm2 microwave radiation, except at 12 hours after 30 mW/cm2 radiation (P <0.05 or P <0.01), with reduced length and number of cell enation and increased intra cytoplasm vacuoles. The rate of cell apoptosis (%) was significantly increased in the 10 and 30 mW/cm2 groups at 6 hours (4.56 +/- 2.09 vs 14.59 +/- 1.09 and 8.48 +/- 1.73, P <0.05 or P <0.01) , with agglutination and margin translocation of chromatins and obvious dilation of endo cytoplasmic reticula. The cAMP content (nmol/g) in the GC-2spd cells was remarkably reduced in the 10 and 30 mW/cm2 groups at 6 and 24 hours (2.77 +/-0.24 vs 1.65+/- 0. 17 and 1.96+/-0.10, 3.02 +/-0.47 vs 2.13 +/-0.33 and 1.69 +/-0.27, P <0.05 or P <0.01).</p><p><b>CONCLUSION</b>Microwave radiation at 10 and 30 mW/cm2 may cause injury to GC-2spd cells, which is manifested by decreased content of intracellular cAMP, reduced activity of cell proliferation, and increased rate of cell apoptosis.</p>


Subject(s)
Animals , Male , Mice , Apoptosis , Radiation Effects , Cell Line , Radiation Effects , Cell Proliferation , Radiation Effects , Microwaves , Spermatocytes , Radiation Effects
3.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 104-107, 2013.
Article in Chinese | WPRIM | ID: wpr-343696

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of electromagnetic pulse (EMP), S-band high power microwave (S-HPM), and X-band high power microwave (X-HPM) on the Ca(2+) concentration and caspase-3 expression in Raji cells and the relationship between Ca(2+) concentration and caspase-3 expression, and to investigate the regulatory mechanism of electromagnetic radiation damage.</p><p><b>METHODS</b>Raji cells were cultured conventionally. Some cells were irradiated by EMP, S-HPM, and X-HPM in the logarithmic growth phase for 6 hours and then collected; others received sham irradiation as a control. The Ca(2+) concentration in the cells was measured by laser scanning confocal microscope; the caspase-3 expression in the cells was evaluated by Western blot.</p><p><b>RESULTS</b>Compared with the control group (Ca(2+) fluorescence intensity = 43.08 ± 2.08; caspase-3 expression level = 0.444 ± 0.13), the EMP,S-HPM, and X-HPM groups had significantly increased Ca(2+) concentrations, with Ca(2+) fluorescence intensities of 69.56 ± 1.71, 50.06 ± 1.89, and 70.68 ± 1.59, respectively (P < 0.01), and had upregulated caspase-3 expression, with expression levels of 0.964 ± 0.12, 0.586 ± 0.16, and 0.970 ± 0.07, respectively (P < 0.01). Each of the EMP and X-HPM groups had significantly higher Ca(2+) fluorescence intensity and caspase-3 expression level than the S-HPM group (P < 0.01), but there were no significant differences between the EMP and X-HPM groups. The linear regression analysis showed that the caspase-3 expression was upregulated as the Ca(2+) concentration increased, with a positive correlation between them (P < 0.01).</p><p><b>CONCLUSION</b>EMP, S-HPM, and X-HPM cause damage probably by increasing the Ca(2+) concentration in cells and in turn inducing caspase-3 overexpression.</p>


Subject(s)
Humans , Calcium , Metabolism , Caspase 3 , Metabolism , Cell Line, Tumor , Electromagnetic Radiation
4.
National Journal of Andrology ; (12): 214-218, 2011.
Article in Chinese | WPRIM | ID: wpr-266188

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of long-term microwave radiation on male reproduction in rats.</p><p><b>METHODS</b>A total of 100 male Wistar rats were exposed to microwave radiation with average power density of 0, 2.5, 5 and 10 mW/cm2 for 4 weeks, 5 times a week and 6 minutes per time. Changes in serum testosterone, testicular index, histology and ultrastructure, and the percentage of teratospermia in the epididymis were observed dynamically at 6 h, 7 d, 14 d, 28 d and 60 d after the exposure.</p><p><b>RESULTS</b>There was a significant decrease in serum testosterone concentration at 28 d after microwave radiation at 2.5, 5 and 10 mW/cm2 ([10.20 +/- 4.31] ng/ml, [5.56 +/- 3.47] ng/ml and [7.53 +/- 4.54] ng/ml) and at 60 d at 10 mW/cm2 ( [15.95 +/- 9.54] ng/ml), as compared with the control group ([23.35 +/- 8.06] ng/ml and [31.40 +/- 9.56] ng/ml) (P < 0.05 or P < 0.01). No significant changes were found in the testis index at 6 h -60 d after microwave radiation at the three doses, but different degrees of degeneration, necrosis and shedding of spermatogenic cells, thinning of spermatogenic epithelia, and decrease or deletion of spermatozoa were observed, and more obvious at 28 d and 60 d. Swelling and cavitation of mitochondria in all spermatogenic cells, agglutination and margin translocation of nuclear chromatin in the spermatogonial and Leydig cells were seen at 7 d and 60 d after 5 mW/cm2 microwave radiation. The rate of teratospermia of the epididymis was increased, more obviously at 7 d after 2.5, 5 mW/cm2, 60 d after 5 mW/cm2, and 7 d, 28 d and 60 d after 10 mW/cm2 microwave radiation (P < 0.05 or P < 0.01).</p><p><b>CONCLUSION</b>Long-term microwave radiation may cause injury to male reproduction, which is positively correlated with the radiation dose, and has an obvious late effect.</p>


Subject(s)
Animals , Male , Rats , Dose-Response Relationship, Radiation , Microwaves , Rats, Wistar , Reproduction , Radiation Effects , Sperm Head , Radiation Effects , Testis , Radiation Effects
5.
National Journal of Andrology ; (12): 10-13, 2010.
Article in Chinese | WPRIM | ID: wpr-241221

ABSTRACT

<p><b>OBJECTIVE</b>To explore the changes in the expressions of the tight junction related protein occludin and junctional adhesion molecule-1 (JAM-1) of the blood-testis barrier and their significance in rats after microwave radiation.</p><p><b>METHODS</b>Eighty male Wistar rats were exposed to microwave radiation with average power density of 0, 10, 30 and 100 mW/cm2 for five minutes, and dynamic changes in the expressions of testicular occludin and JAM-1 were observed by Western blot and image analysis at 6 h, 1 d, 3 d, 7 d and 14 d after the radiation.</p><p><b>RESULTS</b>There was a significant down-regulation in the expression of the occludin protein at 3 - 7 d, 6 h - 7 d and 6 h - 14 d (P < 0. 05), as well as in that of JAM-1 at 3 - 7 d, 1 - 7 d and 1-14 d (P < 0.05) after exposure to 10, 30 and 100 mW/cm2 microwave radiation.</p><p><b>CONCLUSION</b>The decreased protein expressions of occludin and JAM-1 may play an important role in the microwave radiation induced-damage to the blood-testis barrier.</p>


Subject(s)
Animals , Male , Rats , Blood-Testis Barrier , Metabolism , Radiation Effects , Cell Adhesion Molecules , Metabolism , Down-Regulation , Membrane Proteins , Metabolism , Microwaves , Occludin , Rats, Wistar , Testis , Metabolism , Radiation Effects
6.
Chinese Journal of Applied Physiology ; (6): 186-189, 2009.
Article in Chinese | WPRIM | ID: wpr-356301

ABSTRACT

<p><b>AIM</b>To study the development of changes for signaling molecules related to Raf/MEK/ERK pathway in hippocampus of rats after electromagnetic radiation, and investigate the mechanisms of radiation injury.</p><p><b>METHODS</b>Rats were exposed to X-HPM, S-HPM and EMP radiation source respectively, and animal model of electromagnetic radiation was established. Western blot was used to detect the expression of Raf-1, phosphorylated Raf-1 and phospholylated ERK.</p><p><b>RESULTS</b>The expression of Raf-1 down-regulated during 6 h-14 d after radiation, most significantly at 7 d, and recovered at 28 d. There was no significant difference between the radiation groups. The expression of phosphorylated Raf-1 and phosphorylated ERK both up-regulated at 6 h and 7 d after radiation, more significantly at 6 h, and the two microwave groups were more serious for phosphorylated ERK. During 6 h-14 d after S-HPM radiation, the expression of phosphorylated Raf-1 increased continuously, but phosphorylated ERK changed wavily, 6 h and 7 d were expression peak.</p><p><b>CONCLUSION</b>Raf/MEK/ERK signaling pathway participates in the hippocampus injury induced by electromagnetic radiation. The excessive activation of ERK pathway may result in the apoptosis and death of neurons, which is the important mechanism of recognition disfunction caused by electromagnetic radiation.</p>


Subject(s)
Animals , Male , Rats , Apoptosis , Electromagnetic Radiation , Extracellular Signal-Regulated MAP Kinases , Metabolism , Hippocampus , Metabolism , Radiation Effects , MAP Kinase Kinase Kinases , Metabolism , MAP Kinase Signaling System , Radiation Effects , Phosphorylation , Proto-Oncogene Proteins c-raf , Metabolism , Random Allocation , Rats, Wistar
7.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 530-533, 2009.
Article in Chinese | WPRIM | ID: wpr-352836

ABSTRACT

<p><b>OBJECTIVE</b>To explore whether microwave radiation may cause injury of primary cultured Sertoli cells.</p><p><b>METHODS</b>The model of primary cultured Sertoli cells in vitro was established, which was radiated by microwave with average power density 0, 30 and 100 mW/cm(2) for five minutes. The changes of cell cycle, apoptosis and death, and intracellular Ca2+ concentration in the Sertoli cells were measured at sixth hours through Annexin V-PI double labeling and Fluo-3-AM labeling, flow cytometry combined with laser scanning confocal microscopy after microwave exposure.</p><p><b>RESULTS</b>The numbers of Sertoli cells were obviously reduced in G0-G1 and G2-M phase (62.57% +/- 3.22% and 8.25% +/- 1.75%) and increased in S phase (29.17% +/- 4.87%) compared with the control groups (79.18% +/- 0.24%, 11.17% +/- 0.50% and 9.64% +/- 0.62%) (P < 0.05 or P < 0.01), but the changes of rate of apoptosis and death and intracellular Ca2+ concentration showed no difference at 6 h after exposure to 30 mW/cm(2) microwave. There was a significant increase in the Sertoli cell counts of G0-G1 phase (87.69% +/- 1.32%), and decrease in the Sertoli cell counts of G2-M and S phase (7.41% +/- 0.60% and 4.87% +/- 0.91%) (P < 0.01). There was also a significant increase in intracellular Ca2+ concentration and rate of apoptosis and death (P < 0.05 or P < 0.01) at 6 h after exposure to 100 mW/cm(2) microwave.</p><p><b>CONCLUSION</b>100 mW/cm(2) microwave radiation may cause growth inhibition and increase of apoptosis and death in the primary cultured Sertoli cells. The increase of intracellular Ca2+ concentration is one of the injury mechanisms.</p>


Subject(s)
Animals , Male , Rats , Apoptosis , Radiation Effects , Calcium , Metabolism , Cell Cycle , Radiation Effects , Cells, Cultured , Microwaves , Rats, Wistar , Sertoli Cells , Metabolism , Pathology , Radiation Effects
8.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 533-537, 2008.
Article in Chinese | WPRIM | ID: wpr-315710

ABSTRACT

<p><b>OBJECTIVE</b>To study the development of changes for Raf kinase inhibitor protein (RKIP) and its mRNA in rats hippocampus after electromagnetic radiation.</p><p><b>METHODS</b>Rats were exposed to X-band high power microwave (X-HPM), S-band high power microwave (S-HPM) and electromagnetic pulse (EMP) radiation source respectively. The animal model of electromagnetic radiation was established. Western blot was used to detect the expression of RKIP, and RT-PCR was applied to detect the expression of RKIP mRNA. The interaction of RKIP and Raf-1 was measured with co-immunoprecipitation method, and the expression of cerebral choline acetyltransferase (CHAT) was measured by immunohistochemistry.</p><p><b>RESULTS</b>The expression of RKIP significantly down-regulated at 6 h after radiation, and recovered at 1 d in group EMP, but the down-regulation continued during 1 approximately 7 d after radiation in the two microwave groups. The expression of RKIP mRNA changed wavily during 6 h approximately 7 d after radiation, which showed down-regulation at 6 h, and up-regulation at 3 d. The interaction of RKIP and Raf-1 decreased during 6 h approximately 7 d after radiation, most significantly at 7 d, and the two microwave groups were more significant. The expression of CHAT decreased continuously during 6 h approximately 7 d after radiation, and generally recovered on 14 d.</p><p><b>CONCLUSION</b>The down-regulation of RKIP and its related proteins of hippocampus is induced by electromagnetic radiation.</p>


Subject(s)
Animals , Male , Rats , Electromagnetic Radiation , Hippocampus , Metabolism , Radiation Effects , MAP Kinase Kinase Kinases , Metabolism , Phosphatidylethanolamine Binding Protein , Genetics , Metabolism , Proto-Oncogene Proteins c-raf , RNA, Messenger , Genetics , Rats, Wistar
9.
Chinese Journal of Applied Physiology ; (6): 462-465, 2005.
Article in Chinese | WPRIM | ID: wpr-254630

ABSTRACT

<p><b>AIM</b>To investigate the mechanism of protection by sound conditioning from acoustic trauma.</p><p><b>METHODS</b>Sound conditioning experimental model of animals was established. The expression of CaM, HSP70 and F-actin in hair cells were examined with the method of immunohistochemistry. Free calcium concentration in hair cells was observed by LSCM at the same time. Quantitative investigation was devised to assess the changes of F-actin, CaM, HSP70 and intracellular calcium concentration in hair cells.</p><p><b>RESULTS</b>The expression of CaM, HSP70 and F-actin all showed an increased trend after noise exposure. HSP70 and F-actin expressed significantly more in group CH than that expressed in group H. Compared with group H, the expression of CaM showed an increased trend in group CH. Elevation of intracellular calcium concentration could be resulted from noise exposure. The calcium concentration in group H was significantly higher than that in group C and group CH.</p><p><b>CONCLUSION</b>A suitable sound conditioning can make the auditory system of guinea pig more resistant to noise trauma. The strengthened cytoskeleton system and the intracellular calcium homeostasis play a critical role in the protective mechanism of sound conditioning.</p>


Subject(s)
Animals , Female , Male , Acclimatization , Actins , Metabolism , Auditory Threshold , Calcium , Metabolism , Calmodulin , Metabolism , Cytoskeleton , Disease Models, Animal , Guinea Pigs , HSC70 Heat-Shock Proteins , Metabolism , Hair Cells, Auditory , Cell Biology , Metabolism , Hearing Loss, Noise-Induced , Pathology
SELECTION OF CITATIONS
SEARCH DETAIL